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Numerous authors have investigated the state of stress in the adhesive of adhesively bonded joints. They 
have made various assumptions concerning the behavior of the adhesive and adherends to yield tractable 
differential equations which remove the stress singularities which occur at the edges of the bi-material 
interfaces. By examining several test problems, this paper investigates the effect of these assumptions 
on predicted adhesive stress. It was found that predicted maximum adhesive shear stress is insensitive 
to underlying assumptions and that maximum adhesive peel stress is relatively unaffected by most 
assumptions except that neglecting shear deformation of the adherends can affect results by as much as 
30%. Peel stresses from the well known theory of Goland and Reissner which neglects shear deformation 
of the adherends and makes several inconsistent assumptions vary as much as 30% from stresses from 
a consistent lap joint theory which considers shear deformation of the adherends. However, in most 
cases the effects of the inconsistencies cancel the effects of neglecting the shear deformation of the 
adherends and the variation is less than 15%. This paper points out that finite element analyses of 
bonded joints where one layer of 4 node isoparametric elements are used to model the adhesive give 
results very close to those from consistent lap joint theories. 

KEY WORDS Lap joint; bonded connection; simplifying assumptions; adhesive stress; finite element 
analysis; shear deformation. 

INTRODUCTION 

Lap joint theories predict the state of stress in the thin adhesive which bonds the 
adherend plates. In their classic paper, Goland and Reissner presented the first 
modern lap joint theory. Subsequently, numerous authors have proposed theories 
which have improved upon Goland and Reissner's basic formulation."" The 
common feature of all these theories is that simplifying assumptions are made 
concerning the behavior of the adherends and of the adhesive. These assumptions 
remove the stress singularities which occur at the edges of the interfaces of the 
adhesive and the adherends" and yield tractable differential equations which can 
be solved to yield the stresses in the adhesive. Maximum adhesive stresses from 
these solutions can then be used in joint design. The numerous authors who have 
used this approach in analyzing adhesively bonded joints have arrived at their basic 
differential equations by making varying simplifying assumptions. The manner in 
which these assumptions affect predicted adhesive stress is the topic of this paper. 
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56 W. C. CARPENTER 

The effect of a given assumption on predicted adhesive stress is difficult to deter- 
mine with a differential equation approach. However, Carpenter and B a r ~ o u m ' ~  
recently presented special adhesive finite elements which can be used to model the 
adhesive while plate or beam elements can be used to model the adherends. With 
these adhesive elements, control parameters are used to specify which assumptions 
are to be considered. It has been shown that results using this finite element 
approach converge to those of the lap joint theory having the same set of underlying 
 assumption^.'^ By examining the effect of control parameters on adhesive stress, 
the importance of any given assumption associated with a lap joint theory can be 
ascertained. 

In this paper, the common assumptions found in most lap joint theories are first 
discussed. Test problems are then described and the effect on predicted maximum 
adhesive stress of various assumptions is then investigated. 

COMMONLY USED ASSUMPTIONS 

The following is a description of common assumptions used in developing lap joint 
theories. In this paper, a set of control parameters [a1, a2, a3, a4, as, (Y6, IFIN, and 
IPLANE] are used to prescribe what assumptions are currently being considered. 
These control parameters are nothing more than switches that can be turned on, 
off, or set to certain values, to effect a given assumption. The significance of these 
control parameters is next discussed. 

Displacement Assumption and the Strain-Displacement Equations 

Examine the lap joint of Figure 1. Let u be the displacement in the adhesive in the 
x direction and w be the displacement in the z direction. Most lap joint theories 
assume that the displacements in the adhesive vary thus 

i 
L m &  2c Lmci  

FIGURE 1 Lap joint 
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COMPARISON OF THEORIES OF LAP JOINTS 57 

where c l r  c2, c3, and c4 are constants and fl(x) and f2(x) are some function of x. 
The strain-displacement equations for the adhesive are 

where a1 is a control parameter which must be 1 if the complete shear strain- 
displacement equation is used but which is taken to be 0 by some authors. 

Entering equation (1) into equation (2) gives 

where a prime denotes differentiation with respect to x and where a2 = 1 if no terms 
in the strain expressions are being .neglected. The parameter a2 can be set to zero 
to force the state of stress and strain in the adhesive to be constant through the 
thickness of the adhesive. 

Authors such as Goland and Reissnerl and Delale and ErdoganI4 use an incom- 
plete shear strain-displacement assumption and thus take al = 0 which gives a 
constant shear strain through the thickness of the adhesive, as can be seen from 
equation (3). Authors such as Ojalvo and Eidinoff,” on the other hand, take al = 1 
which permits the adhesive shear strain to vary through the thickness of the adhe- 
sive. Authors such as Delale and Erdogan14 assume that strain does not vary through 
the thickness of the adhesive and thus take a2 = 0. 

Shear Deformation of the Adherend 

With lap joint theories, the adherends are treated as beams or plates. All modern 
lap joint theories consider bending and axial deformation of the adherends. Some 
consider shear deformation of the adherends as well, while others neglect shear 
deformation. In this paper, the parameter a3 controls whether shear deformation is 
considered or not. If a3= 1, shear deformation is considered and if a3-0, shear 
deformation is neglected. 

Finite element modeling of the adherend can be accomplished using a beam type 
element as shown in Figure 2. Let 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
7
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



58 

[G]=‘-c, 

W. C. CARPENTER 

0 0 - * c  0 0 -c] 
- - - 

0 c2 G 0 -c2 c3 
0 c3 c4 0 -c3 c5 

0 -c2 -c3 0 

- - - - 

0 
- 

0 
c2 -c3 

- 0 0 C1 
- - - 
- - - - 

FIGURE 2 Beam type element 

Then 

where2’ 

- A*E - 12EZ* - 6EZ* c1=- L 9 c 2 = ~ 3 ( 1 + + )  9 c 3 = ~ 2 ( 1 + + )  
12EZ*a3 4=- 

c4= L( l++)  ’ c5= L( l++)  ’ GA,L3 
- (4++)EZ* - (2-+)EZ* 
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COMPARISON OF THEORIES OF LAP JOINTS 

For rectangular shaped adherends of unit width 

1 5 
6 

A = t ,  I = - t 3  12 , A,=-t 

where t is the thickness of the adherend. 

inconsistent Plane Stress-Plane Strain Assumption for the Adherends 

In earlier lap joint theories such as that of Goland and Reissner,' the adherends 
were taken to be in plane strain when considering bending but were taken to be in 
plane stress when considering axial forces. To be consistent, for plane stress 

I * = I ,  A * = A  (9) 

and for plane strain 

Goland and Reissner' used 

and A* = A  
I I* =- 

1-v2 

which corresponds to using in equation (10) 

0L6= 1 -v2 

Stress-Strain Equations for the Adhesive 

The bonded lap joint is assumed to be elastic and is assumed to be under either 
plane stress or plane strain conditions. A control parameter IPLANE is used in this 
paper to specify which condition is being considered. If IPLANE = 0, plane stress 
is assumed and if IPLANE= 1, plane strain is assumed. 

Adhesive stress and strain are related thus 

where for plane stress (IPLANE = 0) 
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60 W. C. CARPENTER 

and where for plane strain (IPLANE= 1) 

Goland and Reissner' assumed the following 
adhesive 

u, = Eae, 

O I  

stress-strain relationship for the 

To model this violation of the stress-strain equations one should take for plane stress 

C L ~  = 1 - u', and a4= 0 (17) 
or for plane strain 

Zero Adhesive Thickness Assumption 

In theories which consider that the stress in the adhesive is constant through its 
thickness, the deformation characteristics of the adhesive are defined by the quanti- 
ties E,/h and G,/h and not by the parameters E,, G,, and h themselves. Thus, it is 
possible to treat the adhesive as having zero thickness with properties defined by 
E,/h and G,/h. Goland and Reissner' and Delale and ErdoganI4 treat the adhesive 
in this way. This situation is referred to in this paper as the zero adhesive thickness 
assumption and in this paper this assumption is effected by setting the control 
parameter IFIN to 0. In cases where the adhesive is treated as having a finite thick- 
ness, such as with the theory of Ojalvo and Eidin~ff , '~  the situation is referred to 
as the finite adhesive thickness assumption and IFIN is set to 1. 

Table I summarizes the assumptions that are examined in this paper. 

EXAMPLE 1 

In this investigation, the lap joint of Figure 1 with m = O  was considered. Particulars 
of the lap joint are given in Table 11. The lap joint was subjected to the following 
load cases: 

1. Membrane-Shear loading, 
2. Membrane-Bending loading, 
3. Shear loading, and 
4. Bending loading. 

These loading cases are shown in Figure 3. Reference 14 investigated cases 1, 3, 
and 4. 
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COMPARISON OF THEORIES O F  LAP JOINTS 61 

TABLE I 
Control parameters 

Parameter Significance 

IPLANE 

IFIN 

al 

a 2  

a3 

a4 

as 

a6 

= 1 for plane strain 
= O  for plane stress 
= O  for zero adhesive thickness assumption 
= 1 for finite adhesive thickness assumption 
= 0 for incomplete shear-strain displacement assumption for the adhesive 
= 1 for complete shear-strain displacement assumption for the adhesive 
= 0  if adhesive strain does not vary with z 
= 1 if adhesive strain vanes linearly with z 
= O  if shear deformation of the adherends is not considered 
= 1 if shear deformation is considered 
= O  if certain terms in the stress-strain equations for the adhesive are neglected 
= 1 if those terms are not neglected 
= 1 if the consistent stress-strain equations for the adhesive are considered 
= 

= 1 if consistent plane strain assumption for the adherends used 
= 

other value if inconGstent equations used 

other value if inconsistent assumption used 

TABLE I1 
Properties of the configuration 

Parameter Definition Value 

Modulus of elasticity of the adherends 
Poisson’s ratio of the adherends 
Modulus of elasticity of the adhesive 
Poisson’s ratio of the adhesive 
Thickness of the adherends 
Thickness of the adhesive 
One half the lap length 
Applied force in Figure 3 
Applied moment in Figure 3 
Applied moment in Figure 3 

1.OE07 psi 
0.3 

1 .OEM psi 
0.3 

0.25 in 
0.004 in 
1.25 in. 
loo0 Ib 

lo00 Ib in 
lo00 Ib in 

In load cases 1 and 2, the adherends are subjected to an axial force, P. In load 
case 1, reactions are developed to balance the couple caused by P. The vertical 
reaction forces cause shears at the ends of the adherends. Thus, load case 1 is 
referred to as Membrane-Shear loading. In load case 2, moments are applied at the 
ends of the adherends to  balance the couple caused by P. The vertical reaction 
forces, and thus the shear forces at the ends of the adherends, for this case are zero. 
Thus, this case is referred to as Membrane-Bending loading. So as to examine the 
full range of possible boundary conditions for the membrane case, load cases 1 and 
2 are combined as shown is Figure 4a. In Figure 4a, moments of -PPt*/2 are 
applied to the ends of the adherends where t* = t + h. Reactions, and thus the 
amount of shear applied to the ends of the adherends, depend on the parameter, 
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62 W. C. CARPENTER 

membrane-shear membrane-bending 

shear bending 

FIGURE 3 Various loadings 

\ f-b P 

M= -pF't*/2 
6-73' 

a .  membrane, shear and bending 

b .  Shear and bending 
FIGURE 4 Combined loadings 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
7
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



COMPARISON OF THEORIES OF LAP JOINTS 63 

p. When p =0, the loading corresponds to  the Membrane-Shear loading and when 
p = 1, the loading corresponds to the Membrane-Bending loading. 

In load case 3, no axial forces are applied to the adherends but moments are 
applied. These moments cause vertical reaction forces which are shear forces at the 
ends of the adherends. Thus, this loading is referred to as Shear loading. In load 
case 4, no axial forces are applied but moments are applied which do not cause 
vertical reaction forces. Thus, for this loading the shear forces on the adherends are 
zero, and this loading is referred to as Bending loading. To examine the effects of 
shear and bending loadings on the adherends in the absence of axial forces, load 
cases 3 and 4 were combined as shown in Figure 4b. When the parameter y = 0 in 
Figure 4b, the loading corresponds to the Bending loading case and when y = 1 ,  the 
loading corresponds to the Shear loading case. 

The joint was analyzed using 100 beam elements for the adherends and 50 special 
4-node adhesive elements for the adhesive.'' A typical beam element is shown in 
Figures 2 and 5a and a typical 4-node adhesive element is shown in Figures 5a and 
5b. The adhesive elements have offset nodes so that they can connect with the 
beam elements which have their nodes along their centroids as shown in Figure 5a. ,- adhesive element f beam 

node of beam element and 
offset node of adhesive element 

5a. Finite Element Idealization 

0 0 - 
0 0 

T=& 
5b. 4 Node Adhesive Element 

FIGURE 5 Finite element idealization 
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64 W. C. CARPENTER 

.05*C2 .05*C2 

CH- .45*C2 .45*C2 

Four sections, N1 divisions end section, 
N2 divisions center section 
Spacing doubles each division 
N1=15, N2=10, 50 divisions total 

FIGURE 6 Element spacing 

Longitudinal spacing of the elements is shown in Figure 6. This arrangement of 
elements was found to give acceptable convergence of stresses.” 

For both the Shear-Bending study and the Membrane Shear-Bending study, 10 
sets of assumptions were examined. These assumption sets are listed as Cases 1 
through 10 in Table 111. In Case 1, all parameters are set to 1. In Cases 2-8, all 
parameters but one are set to 1 while the remaining parameters in turn are set to 
zero. Case 9 corresponds to the assumptions of Delale and Erdogan.I4 This case 
was investigated as the theory of Delale and Erdogan is considered one of the best 
modern day lap joint theories. Case 10 corresponds to the assumptions made by 
Goland and Reissner’ in their classic paper. 

A typical distribution of adhesive stress along the length of the joint is shown in 
Figure 7 where the stress is along the top adherend-adhesive interface. The loading 
for Figure 7 is the Membrane-Shear loading shown in Figure 3 where P= 1000 lb. 

TABLE I11 
Control Darameters considered 

Case IPLANE IFIN 0 1  a2 a3 a4 as a6 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 

1 
0 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
0 
1 
1 
1 
1 
1 
0 
0 

1 
1 
1 
0 
1 
1 
1 
1 
0 
0 

1 
1 
1 
1 
0 
1 
1 
1 
0 
0 

1 
1 
1 
1 
1 
0 
1 
1 
1 
0 

1 
1 
1 
1 
1 
1 
0 
1 
1 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 

.I43 

1 
1 
1 
1 
1 
1 
1 
0 
1 

.910 
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COMPARISON OF THEORIES OF LAP JOINTS 65 

Adhesive Stress Distribution 
x = distance along joint 

2500 

2000 

v) 1500 
2 
5 1000 

v) 
Q 

v) 

v 

a, > 

c 

.- 
8 500 

2 0  

-500 ! I I I I 

0 0.5 1 1.5 2 2.5 
Coordinate x (in) 

~~ ~~ I - Shear Stress +Peel Stress 1 
FIGURE 7 Adhesive stress distribution along joint 

One can see that maximum adhesive stresses occur at the ends of the joint. It is 
these maximum stresses which are examined in the following studies. 

Figures 8-11 show maximum adhesive normal peel stress (uzz) and maximum 
adhesive shear stress. These maximum stresses occur at the edges of the joint. 
Throughout the examples of this paper, maximum adhesive stresses reported are 
for the left end of the joint at the top adherend-adhesive interface. Notice that in 
the Membrane Shear-Bending study as well as in the Shear-Bending study, there 
was almost no difference in predicted maximum adhesive shear stress for the 
assumption cases examined. 

In both the Membrane Shear-Bending study and the Shear-Bending study, the 
maximum adhesive peel stress was affected very little by most assumptions. The 
factors which did affect the maximum adhesive peel stress were: 

1. whether plane stress or plane strain was being assumed, 
2. whether shear deformation of the adherends was being considered or  not, and 
3. whether a consistent shear stress-shear strain equation was being employed. 

Comparing results with the results of Case 1, the assumption with regard to plane 
stress or plane strain affected results by approximately 6% while neglecting shear 
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66 W. C. CARPENTER 

Membrane Shear-Bending Study 
Adhesive Shear Stress Versus Beta 

Cases Defined in Table I I I 

-7000 1 I 1 1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Beta 

I 

FIGURE 8 Adhesive shear stress, Membrane-Bending Study 

Membrane Shear-Bending Study 
Adhesive Peel Stress Versus Beta 

I "  

9 
8 
7 
6 
5 
4 
3 
2 
1 
O! I I I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Beta 

-I- case 1 + case 2 - case 6 - case 10 * case 357-9 

FIGURE 9 Adhesive peel stress. Membrane-Bending Study 
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COMPARISON OF THEORIES OF LAP JOINTS 67 

Shear-Bending Study 
Adhesive Shear Stress Versus Gamma 

I I I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
38 I 

Gamma 

I-)- case 1,3-9 + case 2 -E- case 10 I 
FIGURE 10 Adhesive shear stress, Shear-Bending Study 

Shear-Bending Study 
Adhesive Peel Stress Versus Gamma 

-85 ! I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Gamma 

- case 1 -+ case 2 + case 6 
* case 10 * case 3-57-9 

FIGURE 11  Adhesive peel stress, Shear-Bending Study 
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68 W. C. CARPENTER 

deformation of the adherends affected results up to 30%. The widely used theory 
of Goland and Reissner' neglects shear deformation of the adherends, inconsistently 
uses plane stress and plane strain for the adherends, and uses an inconsistent shear 
stress-shear strain equation for the adhesive. It had a maximum deviation from 
standard Case 1 of approximately 30% but for most values of p or y the effects of 
the inconsistencies cancel the effects of neglecting the shear deformation of the 
adherends and the deviation was less than 15%. 

EXAMPLE 2 

The configuration used in this investigation was similar to that of Example 1 with 
the exception that the modulus of elasticity of the adhesive was varied to yield 
various E/E, ratios. Properties of the configuration are given in Table I1 and the 
configuration was subjected to Membrane-Shear loading as shown in Figure 3 with 
P =  1000 Ib. The ten assumption cases of Table I11 were investigated. Figure 12 
depicts the maximum adhesive shear stress versus the parameter E/E, and Figure 13 
depicts the maximum adhesive peel stress versus that parameter. As in the previous 
example, adhesive shear stress can be seen to be insensitive to variations in under- 
lying assumptions. As can be seen in Figure 13, most assumption cases gave approxi- 
mately the same results with the exception of Cases 6, 10, and 2. In Case 6, the 
shear deformation of the adherends is being neglected. The maximum adhesive peel 
stress for this case varied from the standard Case 1 by as much as 27%. Case 10 

Modulus Study 
Adhesive Shear Stress Versus E/Ea 

-1 000 e 
v E -1200 

5 -1800 

.$ -2200 

2 -1400 
2 
8 -1600 

-2000 

a 6 -2400 
-2600 

5 10 15 20 25 30 35 40 45 50 
€/€a 

a 

-1- case 1,2,5,6,7 + case 3 
-a- case 8 - case 9 --t case 10 

- case 4 

FIGURE 12 Adhesive shear stress, Modulus Study 
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COMPARISON OF THEORIES OF LAP JOINTS 69 

Modulus Study 
Adhesive Peel Stress Versus E/Ea 

1400 
1300 
1200 
1100 
1000 
900 
800 
700 
600 

Cases Defined in Table I I I 

5 10 15 20 25 30 35 40 45 50 
EIEa 

- case 1,4,5,8,tl - case 2 - case 6 - case 7 7t case 10 
- case 3 

~ 

Adhesive peel stress, Modulus Study 

corresponds to the assumptions of Goland and Reissner' where, among other 
assumptions, the shear deformations of the adherends is neglected. Maximum adhe- 
sive peel stress for Case 10 varied from those of standard Case 1 by as much as 29%. 
Case 2 is the only case where plane stress is being assumed, the other cases assuming 
plane strain. One can see in Figure 13 that the plane stress assumptions lowered the 
maximum adhesive peel stress by approximately 5% from standard Case 1. 

EXAMPLE 3 

Example 3 is similar to Examples 1 and 2 except that in this study the thickness of 
the adhesive is varied from h = 0.001 in to h = 0.016 in. Properties of the configura- 
tion are given in Table 11. As in Example 2, the configuration was subjected to 
Membrane-Shear loading as shown in Figure 3 with P= 1000 lb. Figure 14 depicts 
the maximum adhesive shear stress versus the adhesive thickness and Figure 15 
depicts the maximum adhesive peel stress versus adhesive thickness. As in the 
previous two examples, maximum adhesive shear stress can be seen in Figure 14 to 
be insensitive to the assumption case being considered. Even at the largest adhesive 
thickness considered, maximum adhesive shear stress, for any of the cases consid- 
ered, did not vary from standard Case 1 by more than 4%. In Figure 15, one can 
see that neglecting the shear deformation of the adherend (as in Cases 6 and 10) 
has the most significant effect on results. The zero adhesive thickness assumption 
did not affect maximum adhesive peel stress by more than 5%,  even for the thickest 
adhesive examined. 
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Thickness Study 
Adhesive Shear Stress Versus h 

-1 000 

g -1500 
z 

e rn 
0. 
Y 

Y 

-2000- 

6 -2500 
Cases Defined in Table I I I m 

al 

al > 

r 
'0 

.- 
-3000 

-3500 ! d. 
I 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 
Adhesive Thickness, h (in) 

- case I ,2,5,6,7,8 - case 3 
* case 9 

- case 4 

* case 10 

FIGURE 14 Adhesive shear stress, Adhesive Thickness Study 

Adhesive Thickness Study 
Adhesive Peel Stress Versus h 

1600 I I 
h 'g 1500 - 1400 

1300 z 
tj 1200 

1000 
2 900 

3 700 
600 

rn 

5 1100 

g 800 
v) 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 
Adhesive Thickness, h (in) 

- case 1,5,7,8,9 -I- case 2 
--z case 4 * case 6 -A- case 10 

- case 3 

FIGURE 15 Adhesive peel stress, Adhesive Thickness Study 
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DISCUSSION 

This study demonstrates that adhesive stresses obtained from most modern lap joint 
theories will vary very little from those obtained using the assumptions of Case 1. 
The special adhesive finite element for Case 1 is nothing but the standard 4-node 
isoparametric element2’ found in most finite element libraries. Plate or beam 
elements are also found in most finite element libraries. Thus, this study indicates 
that the results of lap joint theory can be duplicated with standard elements in 
readily available finite element programs where the adhesive is modeled with one 
row of 4-node isoparametric elements. Thus, analysts can conveniently obtain, for 
arbitrary loads or boundary conditions, results comparable with those obtained with 
the lap joint theories. 

Analysts may be tempted to think that if finite element results using one row of 
isoparametric elements are comparable with those from lap joint theories, that 
better results might be obtained using 2, 3 or more rows of adhesive elements. 
Figure 16 depicts the variation of maximum adhesive shear stress and maximum 
adhesive peel stresses for the lap joint of Figure 1 with c=0.625 in, t=0.125 in, 
h=0.01 in, m=0.75 in, and P= lo00 Ib and where the adhesive is modeled using 
the ANSYS” finite element program. Each adherend was modeled with 50 beam 
elements with offset nodes and the adhesive was modeled with varying number of 
rows of isoparametric elements, each row containing 50 elements. One can see that 

Effects of Adhesive Idealization 
on Adhesive Stress 

18- 

e 16 

g 8 14 
B 
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FIGURE 16 Effect of adhesive idealization on adhesive stress 
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higher values of adhesive stress are obtained as more rows of elements are used to 
model the adhesive. This increase in stress with refinement of grid reflects the fact 
that the idealization is coming closer to the exact modeling of the linearized 
equations of elasticity which predict stress singularities at the corners of the bi- 
material interfaces. 

Stresses obtained from lap joint theories or from finite element idealizations with 
one row of isoparametric elements modeling the adhesive are artificial values of 
stress. The reason for using these artificial values is pragmatic. These values are 
easy to obtain, they alleviate the need to obtain stress intensities from a fracture 
mechanics analysis, and analysts have almost a half century of experience in using 
stresses from lap joint theories to predict joint strength. Maximum adhesive stress 
from finite element analyses with 2 or 3 rows of adhesive elements could be taken 
as artificial stresses to be used in design. However, these stresses would not corre- 
spond to those from the lap joint th>ories. 

CONCLUSION 

Over the last several decades, various authors have developed lap joint theories to 
predict stresses in the adhesive of bonded lap joints. The effect of various assump- 
tions associated with lap joint theories has been studied in this paper. It was found 
that many of the sundry assumptions made by various authors have insignificant 
effect on maximum adhesive stress. Several well known theories neglect the effect 
of shear deformation of the adherends. It was found that neglecting the shear defor- 
mation had little effect on adhesive shear stress but could affect the adhesive peel 
stress by as much as 30%. The classic theory of Goland and Reissner' neglects shear 
deformation of the adherends, inconsistently uses plane stress and plane strain for 
the adherends, and uses an inconsistent shear stress-shear strain equation for the 
adhesive. The theory of Goland and Reissner gave adhesive shear stress results that 
were approximately the same as from theories without those assumptions but the 
maximum adhesive peel stresses were as much as 30% different. However, in most 
cases, effects of the inconsistencies cancel the effects of neglecting shear deforma- 
tion of the adherends and the difference was less than 15%. 

It was noted that finite element results, where plate or beam elements were used 
to model the adherends and one row of 4-node isoparametric elements was used to 
model the adhesive, were comparable with those obtained from lap joint theories. 
When 2 or more rows of adhesive elements were used, adhesive stresses were not 
comparable. This part of the study emphasizes the fact that maximum adhesive 
stresses from lap joint theories are artificial stresses, which in no way correspond to 
those obtained from a solution of the linearized equations of elasticity which predict 
a singular stress state at the corners of the adhesive-adherend interfaces. 
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